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Formulation

Key ideas

• Discontinuous Galerkin schemes combine advantages of Finite
Volumes and Continuous Finite Elements:

- local conservation
- numerical stability via Riemann solver
- high-order accuracy, low numerical dissipation
- handling of arbitrary meshes

• IsoGeometric DG1: elements are rational Bezier patches extracted
from NURBS geometry
• Goals of present work:

- extending the IDG framework to time dependent geometries
- quantify the gain of using high-order meshes

1R. Duvigneau, Isogeometric analysis for compressible flows using a Discontinuous Galerkin method, Comput. Methods Appl.
Mech. Engrg. 333 (2018), 443-461
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Formulation

DG formulation

• Considering a system of conservation laws:

∂W
∂t +∇ · F = 0,

• In each element, discrete solution wh represented as:

we
h(x, t) =

∑
i

Re
i (x)we

i (t)

• Ri are rational Bernstein functions, wi are the DOFs
• The weak formulation is:

ˆ
Ωe

Re
k
∂we

h
∂t dΩ =

ˆ
Ωe

∇Re
k · F(we

h)dΩ−
˛
∂Ωe

Re
kF∗dΓ
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Formulation

DG formulation, cont’d

• Elements coupled through numerical flux F∗

• F∗ = F∗(w+
h ,w

−
h ,n) is a consistent Riemann solver:

F∗(w0,w0,n) = F(w0) · n

• Space integrals computed through Gauss quadrature
• Time evolution of DOFs described by system of ODEs:

Mdw
dt = R(wh)

• Explicit Runge-Kutta (RK4 or RK3 SSP) method for time integration
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Formulation

ALE scheme

• The formulation proposed by Nguyen2 is adopted:

d
dt

ˆ
Ωe

RkwhdΩ =
ˆ

Ωe

∇Rk ·
[
F(wh)− Vgwh

]
dΩ−

˛
∂Ωe

RkF∗
aledΓ

• Consistency condition for F∗
ale = F∗

ale(w+
h ,w

−
h ,Vg ,n) becomes:

F∗
ale
(
w0,w0,Vg ,n

)
= F

(
w0
)
· n−

(
Vg · n

)
w0

• Constant solutions preserved when Gauss quadrature is exact
• Mass matrix is time dependent:

d
dt
(
Mw

)
= R(wh,Vg)

2V. T. Nguyen, An arbitrary Lagrangian-Eulerian discontinuous Galerkin method for simulations of flows over variable geometries,
Journal of Fluids and Structures 26 (2010), 312-329
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Formulation

NURBS-based mesh movement

• Isoparametric paradigm used to define grid velocity field:

Vg =
n∑

i=0
Ri ,nVg ,i

• Time evolution of control point net:

dXi
dt = Vg ,i

• Arbitrarily high-order deformations
• Explicit movement: distribution of Vg ,i is imposed at each time step
• Integration with RK4 or RK3 SSP
• Possibility of using refined meshes with non-conformities
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Convergence study

Isentropic vortex test case

• Euler equations
• Advection of an isentropic vortex:

ρ =
(
1− γ−1

16γπ2β
2e2(1−r2)

) 1
γ−1

u = 1− βe1−r2 y−y0
2π

v = βe1−r2 x−t−x0
2π

p = ργ

• Two configurations are compared:
- fixed mesh
- deforming mesh: ug(x, t) = vg(x, t) = sin

(
π
2 x
)

sin
(
π
2 y
)

sin(2πt)
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Convergence study

Error analysis
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Oscillating cylinder

Numerical setup

Viscous flow around a vertically
oscillating cylinder. Setup:
• Mach number: 0.2
• Reynolds number: 500
• Oscillation amplitude: 0.25D
• Oscillation frequency: 0.875Fsh

• Exact cylinder representation,
using rational functions
• Polynomial degree: 3, 4, 5
• 3 mesh refinement levels, with
1065, 2145 and 4455 elements

Figure: mesh levels
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Oscillating cylinder

The lock-in phenomenon

• Vortex shedding synchronized with cylinder oscillation.
• Test case very sensitive to far-field boundary position.
• Good agreement with numerical results available in literature.3

Figure: result comparison Figure: density, p = 4, fine mesh
3H. M. Blackburn, R. D. Henderson, A study of two-dimensional flow past an oscillating cylinder, J. Fluid Mech. 385 (1999),

255-286
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Oscillating cylinder

Mesh convergence

• Lock-in well reproduced with all the polynomial degrees.
• Using high order basis functions on very coarse meshes does not
improve significantly the results.
• Faster convergence with degree 4 and 5.
• Higher order basis affected by severe stability restrictions.
• Optimal degree and refinement depend on required accuracy.
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Oscillating cylinder

Mesh movement test

• Two movement laws:
- rigid oscillation,
- smooth deformation
with Gaussian decay.

• Freestream well preserved,
even with rational functions.
• Nearly identical results.

rigid smooth
ĈL 0.7046 0.7046
C̄D 1.4959 1.4945
E 0.1146 0.1148

Table: p = 4, fine mesh
Figure: density, p = 4, fine mesh
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Pitching airfoil
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Pitching airfoil

Test case configuration

Compressible flow around a
pitching NACA 0012 airfoil:
• cubic polynomial basis
• 4 mesh refinement levels: 700,
1720, 4092 and 11272 elements
• comparison with corresponding
linear mesh
• pitch amplitude:

- Euler: 5o

- Navier-Stokes: 20o

• reduced frequency: 0.25
• Mach number: 0.2
• Reynolds number (NS): 1000 Figure: streamwise momentum, inviscid

(top) and viscous (bottom)
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Pitching airfoil

Influence of the geometry: inviscid flow

• Benefits of curve mesh clearly visible.
• Spurious expansion fans develops at element vertices on linear meshes.
• Flow-tangency boundary conditions depends on the normal, which is
piecewise constant.

Figure: 700 elements mesh, density
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Pitching airfoil

Influence of the geometry: viscous flow

• Similar results, even on very coarse meshes.
• No-slip boundary conditions depends on the position, which is
piecewise linear.
• Viscosity has a regularizing effect.

Figure: 700 elements mesh, density
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Pitching airfoil

Influence of the geometry: mesh convergence

Figure: Inviscid flow, C̄D

Figure: Laminar flow, C̄D

Figure: Inviscid flow, ĈL

Figure: Laminar flow, ĈL
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Conclusions and perspectives

Conclusions and perspectives

• IsoGeometric DG successfully extended to time dependent geometries:
- arbitrarily high-order deformation fields on non-conformal grids
- optimal convergence rates for compressible flow problems
- mesh deformation does not impact accuracy of the scheme
- use of rational elements in ALE formulation

• Gain of using high-order geometry is problem dependent
• Further developments:

- sliding meshes
- ALE with dynamic grid adaptation
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Conclusions and perspectives

Thanks for your attention!
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