A NURBS-based Discontinuous Galerkin Framework for Compressible Aerodynamics

Stefano Pezzano, Régis Duvigneau

Université Côte d’Azur, Inria, CNRS, LJAD
e-mail: stefano.pezzano@inria.fr, regis.duvigneau@inria.fr

AIAA Aviation Forum, 15-19 June 2020
Outline

1. Introduction to IsoGeometric Analysis
2. NURBS-Based Discontinuous Galerkin
3. Extension to deformable domains
4. ALE-AMR coupling
Outline

1. Introduction to IsoGeometric Analysis
2. NURBS-Based Discontinuous Galerkin
3. Extension to deformable domains
4. ALE-AMR coupling
The IsoGeometric paradigm

- Industrial drawing is done using CAD software
- Meshes for numerical simulation are generated from CAD data
- Classical finite elements adopt a different geometric representation with respect to CAD
- Conversion between the two formats is time consuming and the process is not completely automatic
- **IsoGeometric Analysis**: CAD basis functions (NURBS) are employed as approximation space for finite elements
Bernstein polynomials

The building blocks of the CAD representation are the Bernstein polynomials:

\[B^p_i(\xi) = \binom{p}{i} \xi^i (1 - \xi)^{p-i} \quad \xi \in [0, 1] \]

Some important properties:

- non-negativity: \(B(\xi) \geq 0, \quad \forall \xi \)
- partition of unity: \(\sum_i B^p_i(\xi) = 1, \quad \forall \xi \)
- \(B^p_0(0) = B^p_p(1) = 1 \)
- they can be computed recursively
Bézier surfaces

Parametric polynomial surfaces defined as:

\[S(\xi, \eta) = \sum_{i_1=1}^{p+1} \sum_{i_2=1}^{p+1} B_{i_1}^p(\xi) B_{i_2}^p(\eta) X_{i_1i_2} \]

The coefficients \(X_{i_1i_2} \) are called control points.

Conics are not exactly represented with polynomials, rational Bézier surfaces are therefore introduced:

\[R_{i_1i_2}^p(\xi, \eta) = \frac{B_{i_1}^p(\xi) B_{i_2}^p(\eta) \omega_{i_1i_2}}{\sum_{j_1=1}^{p+1} \sum_{j_2=1}^{p+1} B_{j_1}^p(\xi) B_{j_2}^p(\eta) \omega_{j_1j_2}} \]

\[S(\xi, \eta) = \sum_{i_1=1}^{p+1} \sum_{i_2=1}^{p+1} R_{i_1i_2}^p(\xi, \eta) X_{i_1i_2} \]

The coefficients \(\omega_{i_1i_2} \) are called weights.
B-Splines and NURBS

- complex geometries require high-degree functions when using a single polynomial patch
- B-Spline functions $N_i^p(\xi)$ are the piecewise extension of Bernstein polynomials
- Parametric domain $\hat{\Omega} = [\xi_1, \xi_l]$, discretized by the knot vector $\Xi = (\xi_1, \ldots, \xi_i, \ldots, \xi_l)$
- Recursive evaluation:

 $N_i^0(\xi) = \begin{cases}
 1 & \text{if } \xi_i \leq \xi < \xi_{i+1} \\
 0 & \text{otherwise}
 \end{cases}$

 $N_i^p(\xi) = \frac{\xi - \xi_i}{\xi_{i+p} - \xi_i} N_i^{p-1}(\xi) + \frac{\xi_{i+p+1} - \xi}{\xi_{i+p+1} - \xi_{i+1}} N_{i+1}^{p-1}(\xi)$

- NURBS are the rational extension of B-Splines:

 $R_{i_1i_2}^p(\xi, \eta) = \frac{N_{i_1}^p(\xi) N_{i_2}^p(\eta) \omega_{i_1i_2}}{\sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} N_{j_1}^p(\xi) N_{j_2}^p(\eta) \omega_{j_1j_2}}$
Outline

1 Introduction to IsoGeometric Analysis

2 NURBS-Based Discontinuous Galerkin

3 Extension to deformable domains

4 ALE-AMR coupling
Bézier Extraction

- NURBS suitable for CG (classic IgA)
- Rational Bézier functions are DG-compliant
- Bézier patches can be extracted from NURBS
- Extraction based on multiple knot refinements
- Geometry is unaltered

CAD geometry now compatible with DG discretization!
DG formulation

- Navier-Stokes equations in divergence form:
 \[
 \frac{\partial W}{\partial t} + \nabla \cdot F = 0
 \]

- Each element is a rational Bézier patch:
 \[
 \begin{pmatrix}
 x \\
 w_h
 \end{pmatrix}
 = \sum_{i=1}^{(p+1)^2} R_i(\xi, \eta) \begin{pmatrix}
 x_i \\
 w_i
 \end{pmatrix}
 \]

- The weak formulation is:
 \[
 \int_{\Omega} \frac{dW_i}{dt} \rho_k R_i |J_\Omega| d\Omega = \int_{\partial\Omega} \nabla R_k \cdot F |J_\Omega| d\hat{\Omega} - \int_{\partial\hat{\Omega}} R_k F^* |J_\Gamma| d\hat{\Gamma}
 \]

- Integrals computed in the parametric domain, \(J_\Omega \) and \(J_\Gamma \) are metric terms
DG formulation, cont’d

- Elements coupled through numerical flux \mathbf{F}^*
- $\mathbf{F}^* = \mathbf{F}^*(w^+_h, w^-_h, n)$ is a consistent Riemann solver:

 $$\mathbf{F}^*(w_0, w_0, n) = \mathbf{F}(w_0) \cdot n$$

- Space integrals computed through Gauss quadrature
- Time evolution of DOFs described by system of ODEs:

 $$\mathcal{M} \frac{d\mathbf{w}}{dt} = \mathcal{R}(\mathbf{w}_h)$$

- Explicit Runge-Kutta (RK4 or RK3 SSP) method for time integration
2D Laminar Cylinder

- **Exact** cylinder representation, using rational functions
- Polynomial degree: 3, 4, 5
- 3 refinement levels: 1065, 2145 and 4455 elements
- $M_\infty = 0.2$, $Re = 500$

Figure: mesh levels
Mesh convergence

- Comparison with linear grid
- Faster convergence with degree 4 and 5, with curved boundary
- Lower convergence rate with linear geometry
Outline

1. Introduction to IsoGeometric Analysis
2. NURBS-Based Discontinuous Galerkin
3. Extension to deformable domains
4. ALE-AMR coupling
ALE scheme

- The formulation proposed by Nguyen\(^1\) is extended to Bézier elements:

\[
\frac{d}{dt} \left(w_i \int_{\Omega_j} R_k R_i |J_\Omega| d\Omega \right) = \int_{\hat{\Omega}_j} \nabla R_k \cdot (F - V_g w_h) |J_\Omega| d\hat{\Omega} - \int_{\partial \hat{\Omega}_j} R_k F_{ale}^* |J_\Gamma| d\hat{\Gamma}
\]

- Consistency condition for \(F_{ale}^* = F_{ale}(w_h^+, w_h^-, V_g, n) \) becomes:

\[
F_{ale}^*(w_0, w_0, V_g, n) = F(w_0) \cdot n - (V_g \cdot n) w_0
\]

- Constant solutions not exactly preserved due to metric terms

- Mass matrix is time dependent:

\[
\frac{d}{dt} (Mw) = \mathcal{R}(w_h, V_g)
\]

NURBS-based mesh movement

- **Isoparametric** paradigm used to define grid velocity field:

\[
\begin{pmatrix}
 x \\
 v_g \\
 w_h
\end{pmatrix}
= \sum_{i=1}^{(p+1)^2} R_i(\xi, \eta)
\begin{pmatrix}
 x_i \\
 v_{g,i} \\
 w_i
\end{pmatrix}
\]

- Time evolution of control point net:

\[
\frac{dx_i}{dt} = v_{g,i}
\]

- **Arbitrarily high-order deformations**
- Explicit movement: distribution of \(v_{g,i} \) is imposed at each time step
- Integration with RK4 or RK3 SSP
Isentropic vortex test case

- Euler equations
- Advection of an isentropic vortex:

\[
\begin{align*}
\rho &= \left(1 - \frac{\gamma-1}{16\gamma\pi^2}\beta^2 e^{2(1-r^2)}\right)^{\frac{1}{\gamma-1}} \\
u &= 1 - \beta e^{1-r^2} \frac{\gamma-y_0}{2\pi} \\
v &= \beta e^{1-r^2} \frac{x-x_0}{2\pi} \\
p &= \rho^\gamma
\end{align*}
\]

- Two configurations are compared:
 - fixed mesh
 - deforming mesh: \(u_g(x, t) = v_g(x, t) = \sin\left(\frac{\pi}{2}x\right) \sin\left(\frac{\pi}{2}y\right) \sin(2\pi t) \)
Error analysis
Outline

1 Introduction to IsoGeometric Analysis
2 NURBS-Based Discontinuous Galerkin
3 Extension to deformable domains
4 ALE-AMR coupling
Adaptive Mesh Refinement

- Isotropic quadtree-like refinement
- Element and solution splitting based on knot insertion
- Very coarse, but CAD-consistent, initial meshes
- Error indicator based on interface jumps:

\[\varepsilon_j = \sum_{k \in \mathcal{N}_j} \int_{\Gamma_{jk}} \| W_j^i - W_j^k \| \, d\Gamma \]
Coupling with mesh movement

- Moving and deforming bodies = unsteady flows
- Non-linear deformations can make refinement irreversible
- Mesh movement must be AMR-compatible
- Mesh velocity is computed on Level-0 grid and propagated via knot insertion
Laminar Pitching Airfoil

- $M_\infty = 0.2$, $Re = 1000$
- $\Delta \alpha = 20^\circ$, $k = 0.25$
- Separated flow with complex wake pattern
- Level 0 mesh (right): 1248 elements
- 2 level adaptation
- Non-adaptive mesh: 5756 elements
Laminar Pitching Airfoil
Transonic Pitching Airfoil

- $M_\infty = 0.755$, inviscid fluid, with artificial viscosity
- $\alpha_0 = 0.016^\circ$, $\Delta \alpha = 2.51^\circ$, $k = 0.0814$
- Variable intensity moving shock
- Level 0 mesh (right): 720 elements
- 2 level adaptation
- Non-adaptive mesh: 4070 elements
Transonic Pitching Airfoil
Conclusions and perspectives

- A DG framework that natively supports CAD geometries
- Curvilinear grids required for a truly high-order scheme
- ALE formulation with NURBS-based grid velocity
- Mesh movement does not impact overall accuracy
- A simple yet effective ALE-AMR coupling algorithm

Further developments:
- fully conservative sliding meshes
- fluid-structure interaction
- shape optimization

Thanks for your attention!