
A fully-conservative sliding grid algorithm for compressible
flows using an Isogeometric Discontinuous Galerkin scheme

Stefano Pezzano, Régis Duvigneau

Université Côte d’Azur, INRIA, CNRS, LJAD
INRIA Sophia-Antipolis, 2004 route des Lucioles - B.P. 93

06902 Sophia-Antipolis, France

Abstract

This work aims at developing a high-order, fully conservative, numerical scheme for
sliding grids with applications to compressible flows at different regimes (from subsonic
to supersonic). The proposed approach combines a discontinuous Galerkin formulation
for Navier-Stokes equations with rational representations originating from Isogeometric
Analysis, which allows to design a watertight and fully conservative sliding grid algorithm.
A verification exercise is first carried out to rigorously establish the convergence rate of
the method. Then, the accuracy and robustness are demonstrated for a flow around a
pitching ellipse at different regimes. A comparison with a grid deformation technique and
a sensitivity study with respect to the location of the sliding interface are also investigated.
Finally, the flow around a vertical-axis wind turbine configuration is simulated to show
the potentiality of the proposed approach to deal with more complex geometries.

1 Introduction
A significant number of engineering flow problems involve rotating components. This is,
for example, the case of wind turbines, compressors, helicopters, and many others. Often, in
such applications, a part of the geometry remains fixed, whereas other parts rotate. A specific
strategy is therefore necessary to represent the time evolution of the computational domain.
The use of a continuous deformation technique is usually discarded due to the necessity of
dynamic remeshing when confronted with large displacements of the boundary. For this
reason, the simulation of flows involving rotating objects is usually carried out using sliding
grids, in which the computational domains is subdivided into a fixed and a rotating region.
However, the discontinuous mesh movement between the fixed and the moving subdomain
generates hanging nodes along the sliding interface. Moreover, when piecewise linear grids are
employed, the computational domain is characterized by gaps and overlaps. Therefore, specific
numerical methods are required to treat the issues introduced by the sliding movement.

In this context, Discontinuous Galerkin (DG) schemes are appealing because they are
natively capable of handling geometric non-conformities. Ferrer et al. (1) proposed the first
DG method with sliding grids for incompressible flows. On the other hand, Isogeometric
Analysis (IGA) (2) is well adapted to rotating grids because circular interfaces can be ex-
actly represented, thanks to the Non-Uniform Rational B-Splines (NURBS) representation,
avoiding the emergence of holes and overlaps. In the framework of IGA, DG methods can be

1

adopted to handle geometric non-conformities between NURBS patches (3). In particular,
Bazilevs et al. (4) combined a Continuous Galerkin (CG) scheme based on quadratic NURBS
with a DG discretization of the sliding interface to solve the incompressible Navier-Stokes
equations. An alternative strategy is to employ mortars to deal with the hanging nodes. The
mortar approach is based on projections and it was first introduced in the context of spectral
element methods to treat non-conforming meshes (5; 6). More recently, the mortar method
has been adopted to simulate compressible flows with sliding meshes, combined with compact
high-order discretizations (7; 8). Mortar based methods, however, suffer from loss of conser-
vativity when dealing with curvilinear sliding interfaces, due to the nature of the projections
(8). Moreover, as evidenced in (9), interpolation based DG methods are significantly less
expensive than mortar approaches.

In this work, we propose an Isogeometric DG method with sliding meshes for compress-
ible flow problems. The NURBS-based representation is exploited to define watertight rotat-
ing/fixed domains, whereas the DG formulation allows to obtain a fully conservative numerical
scheme, suitable for compressible flows. The developed algorithm is explained in details in
section 3. The methodology is then verified using a classic benchmark for compressible flows
and a thorough error analysis is conducted. Section 5 is dedicated to the investigation of the
viscous flow around a pitching ellipse, with the aim of testing the sliding mesh algorithm on
a more demanding test case. In particular, a mesh sensitivity analysis is performed, with
respect to the grid refinement level, the basis degree and the position of the sliding interface.
Moreover, a comparison with a grid deformation approach is presented. We also simulate the
pitching ellipse in a supersonic flow condition to demonstrate the ability of the sliding mesh
algorithm to deal with shocks. Lastly, in order to prove the potential of the Isogeometric DG
framework for more complex geometries, a 3-bladed vertical axis wind turbine configuration
is considered in section 6. In particular, the generation of a suitable computational grid is
discussed and a flow simulation is carried out. Finally, the main results are outlined in the
conclusion and some research perspectives are discussed.

2 NURBS-based DG with moving meshes
In order to simulate fluid flow problems with moving geometries, we consider the Navier-
Stokes equations in ALE form, with a computational domain which moves with a generic
velocity Vg. The two-dimensional case is presented here, but the proposed approach can
be generalized to the three-dimensional case. The divergence form of the equations is the
following:

∂W
∂t

+ ∇ ·
(
Fc − Fv

)
− Vg · ∇W = 0, (1)

with W being the vector of conservative variables, Fc the convective flux, and Fv the viscous
flux:

W =


ρ

ρu1
ρu2
ρe

 , Fc,i =


ρui

ρu1ui + pδ1i

ρu2ui + pδ2i

ρui
(
e + p

ρ

)
 , Fv,i =


0

τ1i

τ2i

ukτki − qi

 , (2)

where τij is the viscous stress tensor and qi is the thermal conduction flux, defined as:

τij = µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3µ
∂uk

∂xk
δij , (3)

2

qi = −γ
µ

Pr

∂e

∂xi
, (4)

where γ = 1.4, Pr = 0.72 and µ is determined by the Reynolds number. For inviscid flows,
the Euler equations are considered and the viscous flux Fv term is ignored.

The second order derivatives introduced by the viscous part of the equations are treated
using the Local Discontinuous Galerkin (LDG) approach (10). To this end, we reduce eq. (1)
to a system of first order equations by introducing the auxiliary variable G:

∂W
∂t

+ ∇ · Fc(W) − ∇ · Fv(W, G) − Vg · ∇W = 0,

G − ∇W = 0.
(5)

In order to obtain a discrete solution, the NURBS-based DG method relies on Rational
Bernstein functions(11):

Rp
i1i2

(ξ, η) =
Bp

i1
(ξ) Bp

i2
(η) ωi1i2∑p+1

j1=1
∑p+1

j2=1 Bp
j1

(ξ) Bp
j2

(η) ωj1j2

, (6)

where ξ and η are the parametric coordinates, defined in the parametric domain Ω̂ = [0, 1]2.
The coefficients ωj1j2 are the weights and Bp

j are the Bernstein polynomials of degree p.
According to the isogeometric paradigm, a unified mathematical representation is adopted
for the geometry x and the discrete solution fields wh and gh. Thus, in each element, we can
write:  x

wh

gh

 =
(p+1)2∑

i=1
Ri(ξ, η)

xi

wi

gi

 . (7)

The computational mesh is thus a tessellation of rational Bézier patches, whose geometry
is described by the control points xi, whereas wi and gi are respectively the degrees of freedom
(DOF) of the conservative variables and their gradients. The eqs. (5) are discretized using
the direct ALE method developed in (12), leading to the following weak formulation:

d
dt

(
wi

ˆ
Ω̂

RkRi |JΩj | dΩ̂
)

=
ˆ

Ω̂
∇Rk ·

(
Fc − Fv − Vgwh

)
|JΩj | dΩ̂

−
˛

∂Ω̂
Rk

(
F∗

ale − F∗
v

)
|JΓj | dΓ̂,

gi

ˆ
Ω̂

RkRi |JΩj | dΩ̂ =
ˆ

Ω̂
∇Rkwh |JΩj | dΩ̂ −

˛
∂Ω̂

RkW∗ |JΓj | dΓ̂.

(8a)

(8b)

The convective numerical flux F∗
ale is computed through a modified HLL Riemann solver (12),

whereas the LDG flux (10) is used for F∗
v and W∗. Integration is carried out in the parametric

domain Ω̂ using Gauss-Legendre formulas. Due to the mapping between the physical and the
parametric space, the Jacobians |JΩj | and |JΓj | appear in the integrals. Equation (8b) is
solved within each time iteration in a decoupled manner and the system of equations (8) can
be rewritten as:

d
dt

(
Mw

)
= R(wh, Vg), (9)

where M is the mass matrix and the residual R is the right-hand side of eq. (8a). The resulting
set of ordinary differential equations (ODE) (9) is integrated in time using a 4th-order four-
stage explicit Runge-Kutta (RK) scheme. Moreover, it is possible to further simplify the time

3

integration algorithm when the mesh movement is rigid. Indeed, it is trivial to show that the
mass matrix is constant in time when the elements are rotating and translating. We thus
obtain:

Mdw
dt

= R(wh, Vg). (10)

In this case, the mesh movement contributions are limited to the flux terms due to the grid
velocity Vg. Integrating equation (10) is significantly less expensive from the computational
standpoint, as the inverse of the mass matrix is computed in the pre-processing phase.

Finally, artificial viscosity terms are added in the case of discontinuous solutions, based
on the subcell shock capturing procedure presented in (13) extended to rational representa-
tions (14; 15).

3 Sliding mesh algorithm
In this section we explain in details the treatment of sliding meshes. The algorithm is char-
acterized by three phases. First, the geometry is updated and the control points of the mesh
are moved. As the movement is performed, the connectivity between the interface elements
is checked and updated. Once the grid connectivity is established, the interface is subdivided
into smaller arcs shared by only two elements. Lastly, a special treatment of the sliding faces
is required in order to accurately compute the flux integrals. These three phases are detailed
in the following subsections.

3.1 Mesh movement and connectivity update

For the sake of simplicity, we analyse the case of a single rotating subdomain Ωr surrounded
by a fixed region Ωf . The sliding interface is thus defined as I = ∂Ωr ∩ ∂Ωf . Following the
isogeometric approach, the grid velocity field is represented using the same basis adopted for
the DG formulation:

Vg =
(p+1)2∑

i=1
Ri(ξ, η)vg,i , (11)

where the vg,i is the velocity of the i-th control point xi. Since the mesh velocity is described
as a DG field, it is naturally possible to represent discontinuous displacements, which is par-
ticularly useful in the context of sliding meshes. Indeed, the sliding interface is characterized
by a discontinuity of the tangential velocity Vg · t. On the other hand, the normal compo-
nent Vg · n must be continuous, in order to keep the mesh watertight. For perfectly circular
interfaces, the control point velocities

(
ug,i, vg,i

)
can be easily computed thanks to the affine

invariance property of Bézier patches (11). Defining the angular velocity ω and the axis of
rotation O = (x0, y0), we have, for each control point

(
xi, yi

)
in the rotating subdomain Ωr:{

ug,i = −ω(yi − y0),
vg,i = ω(xi − x0).

(12)

Assuming that the elements are initially aligned, the discontinuity in the mesh movement
generates hanging nodes along the sliding interface, as it can be observed in Fig. 1. Con-
sequently, the degrees of freedom of the elements adjacent to the interface are not aligned.
As the inner domain rotates, the position of the hanging nodes changes as well. In order to

4

(a) Domain subdivision (b) Degrees of freedom along the interface

Figure 1: Generation of hanging nodes due to the sliding movement

update the mesh connectivity, we rely on the computation of two angles, as represented in
Fig. 2. ∆θ0 is the angular amplitude of the element edge between x1 and x2, whereas ∆θs

is the angular amplitude of the circular arc between x1 and the hanging node xs. We then
define the ratio s as:

s = ∆θs

∆θ0
. (13)

The current connectivity is valid when 0 < s < 1, whereas it must be updated when the
angular ratio s becomes negative or greater than the unity.

Figure 2: Definition of the angles for connectivity update

3.2 Interface splitting

The second step of the sliding algorithm is the subdivision of the interface into a set of
elemental faces, which are shared uniquely by two elements. Let us name Ω0 the rotating
element, Ω1 and Ω2 the corresponding fixed elements, as illustrated in Fig. 3. The elemental
sliding faces are therefore Γ1 = ∂Ω0 ∩∂Ω1 and Γ2 = ∂Ω0 ∩∂Ω2. We also define Γ0 = ∂Ω0 ∩I =
Γ1 ∪ Γ2.

The splitting procedure relies on the properties of the NURBS representation. Indeed, a
rational Bézier curve of degree p defined on the parametric interval (0, 1) can be interpreted

5

Figure 3: Splitting procedure in the parametric and physical spaces

as a NURBS curve with a the following knot vector:

Ξ = {0, . . . , 0︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

}. (14)

Let us define the splitting parameter σ as the value of ξ0 that corresponds to the physical
position of the hanging node xs on the face Γ0. It is then possible to divide Γ0 into the two
elemental faces, Γ1 and Γ2, by applying (p + 1)-times the knot insertion algorithm (11) at
the parametric coordinate ξ0 = σ. We thus obtain two Bézier curves with the following knot
vectors:

Ξ1 = {0, . . . , 0︸ ︷︷ ︸
p+1

, σ, . . . , σ︸ ︷︷ ︸
p+1

}, Ξ2 = {σ, . . . , σ︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

}. (15)

The control points of the new curves are obtained by recursively using p times the knot
insertion formula, specialized here for Bézier representations:

xr+1
i = (1 − αr

i)xr
i−1 + αr

i xr
i , αr

i =


1 if i ≤ r + 1
σ if r + 2 ≤ i ≤ p + 1
0 if i ≥ p + 2

(16)

with r = 0, . . . , (p − 1). The result of the splitting procedure is illustrated in Fig. 3 for a
quadratic representation.

In order to adopt the described splitting algorithm, the value of σ must be known. Due
to the rational nature of the representation, computing σ is not trivial. The procedure that
allows to determine the parameter corresponding to a given point of a rational Bézier curve
is the point inversion algorithm (11). If we denote C as the Bézier representation of the Γ0
curve, we can write:

C(σ) =
∑p+1

i=1 Bp
i (σ) ωi xi∑p+1

j=1 Bp
j (σ) ωj

= xs, (17)

where ωi and xi are respectively the weights and the control points of the considered edge.
The problem of determining σ is solved by minimizing the square of the distance between the
curve C and the hanging node:

g(ξ0) = ||C(ξ0) − xs||2. (18)

6

Imposing g′(σ) = 0, one obtains:

f(σ) = C′(σ) ·
(
C(σ) − xs

)
= 0. (19)

The solution of eq. (19) is achieved by means of an iterative algorithm. Piegl et al. (11)
adopted the Newton algorithm to solve the point inversion problem. Such an approach re-
quires to analytically compute the first derivative of f , which contains the second derivative
of the Bézier curve C. In order to avoid the costly computation of C′′, we employ the secant
algorithm, which results in the following recursive formula:

σi = σi−2f(σi−1) − σi−1f(σi−2)
f(σi−1) − f(σi−2) , (20)

and we initialise the algorithm taking σ1 equal to the angular ratio s used to update the
connectivity, and σ0 equal to the splitting parameter computed for the previous time step.
The convergence conditions to stop the secant iterations are:{

f(σi) ≤ 10−15,

|σi − σi−1| ≤ 10−14.
(21)

Since the values used to initialise the algorithm already provide a close estimate of the actual
splitting parameter, few iterations are required. In practice, we observed that the convergence
conditions are always satisfied in less than 5 iterations.

3.3 Flux computation

Once the interface is split into the elemental faces, it is possible to compute the flux integrals
of the DG scheme. For each elemental segment of the interface, two integrals have to be
computed, one for the rotating element and one for the fixed element. The difficulty of
computing the flux integrals is due to the non-matching parameterisation on the two sides
of the interface. Indeed, due to the lack of alignment of the elements between Ωr and Ωf ,
the face Γ1 is described using two different parameterisations and the same is true for Γ2, as
presented in Fig. 3. If we focus on Γ1, the flux integrals for a numerical flux function F∗ are:

f−
1 =

ˆ
Γ1

Rk

(
ξ1)

F∗(
w−

h (ξ1), w+
h (η1), n

)
dΓ1, (22)

f+
1 =

ˆ
Γ1

Rk

(
η1)

F∗(
w−

h (ξ1), w+
h (η1), n

)
dΓ1. (23)

One could naively try to use as quadrature points the Gauss-Legendre nodes on the interval
ξ1 ∈ [0, σ] for f−

1 and on the interval η1 ∈ [1 − σ, 1] for f+
1 . However, the positions of

the integration points in the physical space do not match, due to the non-linearity of the
coordinate transformation, resulting in a locally non-conservative scheme. The effect of the
loss of conservativity is presented in Fig. 4a for a freestream preservation problem. We can
clearly observe the spurious oscillations around the sliding interface.

We can instead obtain a fully conservative scheme by computing both flux integrals on
the parametric interval ξ1 ∈ [0, σ]. We therefore rewrite f−

1 and f+
1 as:

f−
1 =

ˆ σ

0
Rk

(
ξ1)

F∗(
w−

h (ξ1), w+
h

(
η1(ξ1)

)
, n

)
|JΓ1 | dξ1, (24)

7

(a) Non-conservative interface (b) Fully conservative interface

Figure 4: Freestream preservation with non-conservative and conservative sliding interfaces

f+
1 =

ˆ σ

0
Rk

(
η1(ξ1)

)
F∗(

w−
h (ξ1), w+

h

(
η1(ξ1)

)
, n

)
|JΓ1 | dξ1, (25)

where |JΓ1 | is the Jacobian of the map between ξ1 and Γ1. In order to approximate expressions
(25) and (24) with numerical quadrature, the reparameterisation η1(ξ1) has to be computed
for the quadrature points. If we denote ξ1

gp as the parametric coordinate of a generic Gauss-
Legendre point, then its physical coordinate is equal to:

xgp =
∑p+1

i=1 Bp
i (ξ1

gp) ωi xi∑p+1
j=1 Bp

j (ξ1
gp) ωj

=
∑p+1

i=1 Bp
i (η1

gp) υi yi∑p+1
j=1 Bp

j (η1
gp) υj

, (26)

where xi and ωi are the control points and weights of the elemental face, whereas yi and υi

are the control points and weights of the edge of Ω1. The reparameterisation η1
gp is found by

solving eq. (26) with the point inversion algorithm described in the previous section. The
same treatment is then repeated for the integrals over the face Γ2:

f−
2 =

ˆ 1

σ
Rk

(
ξ2)

F∗(
w−

h (ξ2), w+
h

(
η2(ξ2)

)
, n

)
|JΓ2 | dξ2, (27)

f+
2 =

ˆ 1

σ
Rk

(
η2(ξ2)

)
F∗(

w−
h (ξ2), w+

h

(
η2(ξ2)

)
, n

)
|JΓ2 | dξ2. (28)

In order to show the effectiveness of the proposed strategy, we report in Fig. 4b the result of
the freestream preservation test and compare it with non-conservative integral computation.
We can observe that the spurious oscillation around the interface are absent and that the
constant solution is well preserved.

4 Verification: isentropic vortex
The developed sliding mesh technique is firstly tested on an analytic problem governed by
the compressible Euler equations. The considered test case consists in the advection of an
isentropic vortex, which is a common benchmark for assessing the accuracy of compressible

8

flow solvers (16). The time evolution of the flow is described by the following function:

ρ =
(

1 − γ − 1
16γπ2 β2e2(1−r2)

) 1
γ−1

u = 1 − β
y − y0

2π
e1−r2

v = β
x − t − x0

2π
e1−r2

p = ργ

(29)

where r =
√

(x − t − x0)2 + (y − y0)2, with x0 = 5, y0 = 0 and β = 5. The computational
domain is [2.5, 10] × [−2.5, 2.5] and the boundary fluxes are computed using the analytic
solution (29).

(a) Initial mesh (b) Rotating mesh and solution field at t=1.2

Figure 5: Isentropic vortex, setup

The computational domain is divided into two regions, a rotating one and a fixed one, as
illustrated in Fig. 5. The radius of the sliding interface is equal to 1.5, the centre of rotation
of the inner region corresponds to the initial axis of the vortex, and a unitary rotational
frequency is adopted. The core of the vortex is therefore inside the rotating subdomain in
the initial phase of the simulation. As the vortex is advected downstream, it crosses the
sliding interface to enter the fixed subdomain, as it can be observed in Fig. 5b. The proposed
test case allows to investigate how well the sliding interface is capable of preserving the flow
characteristics.

In order to perform a rigorous error analysis, a convergence study is carried out. Starting
from the baseline mesh presented in Fig. 5a, isotropic refinement is applied to obtain four
different levels of mesh resolution. Quadratic, cubic and quartic basis functions are tested.
For each combination of degree and mesh level, a simulation is performed considering a fixed
inner subdomain as well. By comparing the results obtained with the two approaches, it
is possible to quantify the error introduced by the computation of the flux integrals on the
sliding interface. The L2-norm of the error for the total energy field is evaluated at t = 2
using numerical quadrature. The results of the convergence analysis are presented in Fig. 6.
It can be observed that optimal convergence rates are obtained for all basis degrees for both
fixed and sliding meshes. Furthermore, roughly the same errors are obtained with the two
techniques, meaning that the error generated by the sliding interface is negligible and flow
characteristics are perfectly preserved.

9

(a) p = 2 (b) p = 3 (c) p = 4

Figure 6: Isentropic vortex, error analysis

5 Case study: pitching ellipse flow
The second test case concerns the bidimensional flow around a pitching ellipse. Thanks to
the use of rational Bézier functions, the ellipse can be exactly represented. Thus, there is no
additional error introduced by the discretization of the computational domain. The aspect
ratio of the ellipse is equal to 12 and its angle of attack evolves in time with the following
law:

α(t) = −A sin(2πft), (30)

with reduced frequency k = πfc/U∞ = 0.5π and amplitude A = 30◦. The ellipse is pitching
about its center. We consider a laminar subsonic flow condition with freestream Mach number
equal to 0.2 and a Reynolds number of 500. The flow configuration is characterized by a
periodic vortical wake generated by the dynamic separation of the boundary layer around
the ellipse. Therefore, the aim of the proposed test case is to study the behaviour of the
developed sliding mesh technique for complex unsteady flows.

5.1 Mesh convergence

Firstly, a mesh convergence study is conducted. We consider a large computational domain,
delimited by the rectangle [−30c, 60c] × [−30c, 30c], with c being the major axis of the ellipse.
The far-field boundary conditions are weakly imposed using Riemann invariants. On the
ellipse surface, a weakly prescribed no-slip adiabatic wall boundary condition is adopted.
Since the isogeometric approach allows an exact representation of the boundary, an extremely
coarse baseline mesh of degree two can be generated. As represented in Fig. 7, the meshes
adopted for the actual computations are obtained applying a hierarchical refinement to the
baseline configuration. The convergence analysis is carried out using 3 mesh refinement levels:

• level 1: 1464 total elements, 16 of which on the ellipse boundary,

• level 2: 2406 total elements, 32 of which on the ellipse boundary,

• level 3: 5046 total elements, 64 of which on the ellipse boundary.

10

(a) Baseline mesh (b) Level 1 mesh

(c) Level 2 mesh (d) Level 3 mesh

Figure 7: Different refinement levels for the ellipse simulation

The study is performed using rational basis defined using quadratic, cubic and quartic poly-
nomials. The radius of the sliding interface is equal to 0.75c, meaning that the minimum
distance between the ellipse and the interface is of a quarter of the major axis length c.

The initial condition of the simulations corresponds to the uniform freestream flow state.
After a numerical transient, the solution converges to a stable limit cycle in which the flow
fluctuations are synchronized with the pitching movement of the ellipse. We present in Fig.
8 the evolution of the aerodynamic coefficients over one pitching cycle. We compute, for
each cycle, the average drag coefficient C̄d, the peak lift coefficient Ĉl and the energy transfer
coefficient E. The latter being defined as the area delimited by the Cm − α curve:

E = 1
1
2ρ∞u2

∞c2

˛
Mz dα =

˛
Cm dα, (31)

where Mz is the moment of the aerodynamic forces with respect to the pitching axis. The
simulations are stopped when the considered coefficients are sufficiently converged in time.

The results of the mesh convergence analysis are reported in Fig. 9. All the tested
configurations of degrees and refinement levels are able to reproduce the synchronization
between the flow and the pitching movement. As expected, a significantly faster convergence
is observed when the degree of the basis is increased. At the same time, the coarsest mesh
is not capable of predicting with accuracy all the coefficients, even with quartic polynomials.
Indeed, the level 2 grid with a cubic representation provides a better estimation of C̄d, with
a similar number of degrees of freedom. Therefore, we conclude that the cubic level 2 mesh
represents a satisfactory compromise between accuracy and computational cost. In general,
the best trade-off is found by combining h and p refinements. We can also remark that

11

(a) Drag coefficient (b) Lift coefficient (c) Moment coefficient

Figure 8: Pitching ellipse, limit cycle solution, cubic level 2 mesh

(a) Average drag (b) Peak lift (c) Energy transfer

Figure 9: Pitching ellipse, convergence of the aerodynamic coefficients

the value of E is negative, which means that, from a physical point of view, the energy is
transferred from the ellipse to the fluid.

5.2 Comparison with deforming mesh

In the second part of the ellipse case study, we compare the sliding mesh approach with the
deformation technique validated in (12). Since the pitching amplitude is limited to 30◦, it
is still possible to continuously deform the computational domain without incurring into an
excessive distortion of the mesh, which could potentially decrease the accuracy of the solution.
In order to compare the two techniques, we repeat the convergence study with the grids of
Fig. 7 using the ALE methodology. To this end, a mesh velocity field Vg needs to be defined.
The computational domain is thus divided in three regions: an inner one that oscillates rigidly
with the ellipse, an outer fixed zone and a transition region. The velocity of the control point
net is computed with the following law:{

ug(x, t) = −ω̃ y

vg(x, t) = ω̃ x
(32)

12

with ω̃ = α̇ σ(x, t), where σ is a piecewise-defined blending function:

σ(x, t) =


1, if R ≤ Rint

1
2

[
1 + cos

(
π

R − Rint

Rext − Rint

)]
, if Rint < R < Rext

0, if R ≥ Rext

(33)

with R =
√

x2 + y2. The distance Rint is equal to the radius of the sliding interface and
Rext = 4c. Intuitively, the sliding mesh movement can be interpreted as the limit case where
Rext = Rint. We illustrate in Fig. 10 the differences between the deforming and the sliding
meshes. Besides, we can observe that, despite the significant differences between the two
grids, the density fields obtained with the two approaches are visually identical.

(a) Sliding mesh (b) Deforming mesh

Figure 10: Comparison of sliding and deforming meshes, density field, quartic level 2 mesh

In order to better compare the two approaches, C̄d, Ĉl and E are computed for the
deforming mesh as well. The numerical values of the three aerodynamic coefficients are
reported in Tables 1, 2 and 3 respectively. We can observe that the same converged values
are obtained with both the techniques. Therefore, we conclude that the proposed sliding mesh
approach is correctly capable of simulating complex flows. Although some small discrepancies
are observed between the values obtained using the level 1 meshes, there is no evidence to
infer that one methodology is more accurate than the other. However, the sliding approach
is less expensive from a computational point of view, because the mass matrix is constant in
time, and is less limited in terms of movement amplitude.

Sliding Deformation
Degree Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

2 0.4924 0.4846 0.4839 0.4916 0.4833 0.4838
3 0.4882 0.4837 0.4841 0.4835 0.4836 0.4841
4 0.4827 0.4840 0.4840 0.4820 0.4840 0.4840

Table 1: Average drag coefficient for sliding and deforming meshes

13

Sliding Deformation
Degree Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

2 2.694 2.623 2.623 2.691 2.619 2.622
3 2.645 2.624 2.626 2.630 2.624 2.626
4 2.627 2.626 2.626 2.624 2.626 2.626

Table 2: Peak lift coefficient for sliding and deforming meshes

Sliding Deformation
Degree Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

2 -0.7207 -0.7070 -0.7055 -0.7204 -0.7059 -0.7054
3 -0.7114 -0.7053 -0.7055 -0.7065 -0.7052 -0.7055
4 -0.7054 -0.7054 -0.7054 -0.7047 -0.7054 -0.7054

Table 3: Energy transfer coefficient for sliding and deforming meshes

5.3 Influence of the sliding interface radius

We then employ the ellipse case study to investigate the effect of the placement of the slid-
ing interface on the numerical results. Low-order sliding mesh approaches can introduce
numerical artifacts in the approximate solution, due to a loss of conservativity and poor in-
terpolation. Ideally, the sliding interface should not be in close proximity of the boundary in
order to limit the effects of spurious phenomena on the aerodynamic coefficients. On the other
hand, a smaller rotating region allows to reduce the computational costs, because the smaller
tangential velocity of the mesh allows to increase the time step. Therefore, the generation
of meshes with sliding interfaces is the result of a trade-off and the process heavily relies on
user experience. In this context, the use of a geometrically exact movement coupled with a
high-order interpolation can significantly improve the accuracy of sliding grids and simplify
the mesh generation task.

The previous convergence analysis was carried out considering a sliding interface radius
equal to 0.75c. By slightly modifying the baseline grid 7a, we were able to obtain three
additional meshes, with different placements of the interface: one with a smaller radius of
0.625c, and two with a larger rotating region, with r equal to c and 1.5c, as illustrated in Fig.
11. In order to provide a fair comparison, the refinement process has been adapted to obtain
a similar resolution in the wall area for all the considered grids. A cubic representation is
employed and the overall mesh resolutions are comparable to the level 2 refinement adopted
in the convergence study.

The values of C̄d, Ĉl and E obtained for the different positions of the sliding interface are
reported in Table 4. We do not observe a significant variation of the aerodynamic coefficients
with respect to the radius of the interface. One can notice that the most sensitive quantity is
the average drag coefficient. However, the relative variation between the maximum and the
minimum value is less than 0.13%, which is completely negligible in a practical application.
We can therefore state that, thanks to the accuracy of the developed sliding mesh technique,
the results are nearly independent with respect to the position of the sliding interface. This
simplifies the mesh generation problem, as the subdivision of the computational domain will
be primarily dictated by the geometrical features of the boundary.

14

(a) r/c = 0.625 (b) r/c = 0.75

(c) r/c = 1.00 (d) r/c = 1.50

Figure 11: Meshes with different sliding interface placements

r/c 0.625 0.75 1.00 1.50
C̄d 0.4834 0.4837 0.4839 0.4840
Ĉl 2.6246 2.6244 2.6248 2.6247
E -0.7052 -0.7053 -0.7054 -0.7054

Table 4: Variation of the aerodynamic coefficients with respect to r/c

5.4 Supersonic flow

We conclude the ellipse case study with a simulation in the supersonic regime. The amplitude
of the pitching motion is reduced to A = 15◦ and a freestream Mach number equal to 2 is
considered. The computation is performed using quadratic rational basis functions and the
level 3 mesh, illustrated in Fig. 7d. The simulation of supersonic flows requires robust nu-
merical algorithms, because of the presence of strong shocks. Furthermore, non-conservative
schemes can lead to incorrect estimations of the shock velocity.

The considered flow is characterised by a bow shock in front of the ellipse. As the angle
of attack α oscillates, the shape and intensity of the bow shock evolve. The density fields for
three different values of α are illustrated in Fig. 12. As we can observe, the discontinuity
is well resolved and the sliding interface does not interfere with the movement of the shock,
since there is no loss of conservativity. As in the subsonic case, the solution converges to a
stable limit cycle after the initial transient. In Fig. 13 we report the limit cycle curves for the
aerodynamic coefficients Cl, Cd and Cm. We also estimate C̄d, Ĉl and E for the supersonic
flow condition. The computed values are: C̄d = 0.223, Ĉl = 0.532, and E = −0.0146.

15

(a) α = 0◦, ascending phase (b) α = 15◦ (c) α = 7.5◦, descending phase

Figure 12: Supersonic pitching ellipse flow, density fields

(a) Drag coefficient (b) Lift coefficient (c) Moment coefficient

Figure 13: Supersonic pitching ellipse flow, limit cycle solution

6 Application: vertical axis wind turbine
Sliding meshes are commonly employed to simulate rotating machinery such as helicopter
rotors (17), axial compressors (18) and wind turbines (19). These kind of applications are
characterized by complex geometries and topologies. For this reason the present section is
dedicated to the investigation of a more challenging test case. In particular, we consider a
Vertical Axis Wind Turbine (VAWT).

6.1 Construction of the computational domain

The first challenge of the proposed application is the generation of a suitable high-order mesh
to perform the flow simulation. We start by defining the geometry of the turbine. Among the
several possible VAWT designs, we consider an H-Darrieus rotor type (20) with three NACA
0018 blades. Being N the number of blades, the radius of the turbine R and the chord of
the blades airfoils c are defined by means of the solidity σ = Nc/R, which is equal to 0.5 for
our application. A cylindrical mast of radius r = 0.2c completes the geometry of the rotor.
The outer boundaries are sufficiently far from the turbine in order to allow the development
of the wake and to avoid unwanted acoustic perturbations due to spurious reflections. As for

16

the ellipse case study, the far-field boundary conditions are based on Riemann invariants and
the rotor surfaces are considered to be adiabatic no-slip walls.

(a) Baseline mesh (b) First refinement step (c) Smoothed mesh

Figure 14: Initial VAWT mesh, refinement and smoothing. The colorscale represents the
Jacobian of the Isogeometric map.

A rational quadratic representation is adopted for the rotor geometry and the sliding
interface. The mast is therefore exactly described, whereas the NACA airfoil is approximated
via least square fitting. In order to generate the mesh, we exploit the periodic pattern of
the geometry. We first create a very coarse block-structured grid, presented in Fig. 14a.
The baseline grid must respect the constraint of having a uniform subdivision of the sliding
interface. Moreover, due the scale differences between the mast radius, the blade chord and
turbine diameter, the initial patches are visibly irregular. We illustrate in Fig. 14b the mesh
obtained after one isotropic refinement step and the Jacobian of the isogeometric map. It can
be observed that strong discontinuities in the value of the Jacobian are present between the
mesh blocks.

In order to improve the mesh regularity, we adopt a simple elliptic relaxation technique.
The developed approach is an adaptation to high-order Bézier grids of the barycentric smooth-
ing algorithm described by Falsafioon et al. (21). In each step of the relaxation procedure,
the updated position of the j-th control point is equal to the barycentre of the neighbouring
control points:

xk+1
j = 1

n

n∑
i=1

xk
i , (34)

with n being the number of neighbours of xj . The sequence defined by eq. (34) converges
towards the solution of the Laplace equation for the coordinate fields. The mesh illustrated in
Fig. 14c is obtained applying the barycentric smoothing algorithm for 50 iterations starting
from the grid of Fig. 14b. We notice that the regularity is significantly improved and that
the gradient of the Jacobian is globally reduced. The mesh used for the actual computations
is obtained by locally refining the smoothed grid in the rotor region, in particular around the
mast and the blades, as presented in Fig. 15. The resulting grid consists of 18545 elements
in total.

17

(a) Final rotor mesh (b) Detail of the mast region (c) Detail of the blade region

Figure 15: Final VAWT mesh

(a) Overall view (b) Zoom on blade 1

(c) Zoom on blade 2 (d) Zoom on blade 3

Figure 16: VAWT simulation, velocity field

6.2 Flow simulation

The typical working conditions of VAWTs are characterized by turbulent flows. Indeed, the
blades need to have a sufficiently high lift-to-drag ratio to generate power, meaning that the
flow regime of the airfoil has to be at least transitional. Simulating such a flow configuration
requires turbulence modelling, high mesh resolution and implicit time integration, which is
out of the scope of the current work. For these reasons, the present simulation is only carried
out in the laminar regime, instead of considering fully realistic flow conditions.

The freestream Mach number is equal to 0.1 to avoid unwanted compressibility effects.

18

Figure 17: VAWT simulation, evolution of the aerodynamic coefficients

The rotational speed ω of the turbine is defined using the tip-speed ratio λ = ωR/u∞. For
the present simulation λ = 2, meaning that the tangential velocity of the blades is twice the
freestream speed. The Reynolds number Re rotor computed using u∞ and the turbine radius
is equal to 3000. In order to estimate the flow regime around the airfoils, we can consider
the maximum possible relative velocity of the blades with respect to the freestream condition
and compute:

Re blade = c (u∞ + ωR)
ν

= σ

N
(λ + 1) Re rotor = 1500. (35)

The flow around the blades is therefore laminar. In a realistic condition Re blade ≈ 105 at least.
The result of the laminar regime is the separation of the blades boundary layer very close to the
leading edge and the consequent formation of large vortical structures, as it can be observed in

19

Fig. 16. As the large structures are advected, interactions occur between the eddies and both
the mast and the blades, resulting in a complex chaotic flow. A total of 10 revolutions are
simulated. The evolution of the power coefficient Cp and of the aerodynamic force coefficients
of the turbine are reported in Fig. 17. Due to the chaotic nature of the solution it is not
possible to extract a periodic pattern for the Cp curve. Indeed, the interactions between the
rotor and the vortical structures generates strong fluctuations in the power coefficient. Also,
we can notice that the value of Cp is negative, meaning that the movement of the turbine
is absorbing energy. This is a direct consequence of the poor aerodynamic performance of
the blades in the laminar regime. Nevertheless, this study illustrates the capability of the
proposed sliding mesh algorithm to deal with complex configurations.

7 Conclusion
In this paper we developed a high-order accurate sliding mesh technique for compressible
flows. The proposed methodology is based on the isogeometric paradigm: a CAD-consistent
DG formulation has been employed to discretize the Navier-Stokes equations. Then, starting
from a general ALE framework, we detailed the numerical formulation and the treatment
of the sliding interface. In particular, the properties of the NURBS representations were
employed to implement an accurate and fully conservative sliding mesh algorithm.

The proposed approach has been firstly verified on a classic benchmark problem for in-
viscid flows and optimal convergence rates were observed for all the tested basis degrees.
Furthermore, the comparison with an equivalent fixed grid showed that the error introduced
by the sliding interface is negligible. As a second test case, we studied the viscous flow
around a pitching ellipse, and the obtained results confirmed the precision and robustness of
the sliding algorithm. We were able to compare the sliding mesh technique with a previously
validated ALE formulation based on mesh deformation. We then showed that the outcome
of the simulation is independent with respect to the position of the sliding interface. Lastly,
we demonstrated the versatility of the developed methodology considering a supersonic flow
condition.

As last case study, we simulated the flow around a 3-blade VAWT configuration, allowing
us to evaluate the potential of the proposed approach on a more complex geometry. We
especially focused on the construction of the computational grid, starting from a set of coarse
Bézier patches. In order to obtain a better mesh quality, a smoothing algorithm has been
employed, showing that ideas originating from unstructured grid generation can be beneficial
in the context of isogeometric analysis as well.

Code Repository
The developed methodology is implemented in the Igloo software suite, which has been
employed to perform all the presented computations. The source code and data are available,
under the GNU General Public Licence v3, at the following repository: https://gitlab.
inria.fr/igloo/igloo/-/wikis/home.

20

https://gitlab.inria.fr/igloo/igloo/-/wikis/home
https://gitlab.inria.fr/igloo/igloo/-/wikis/home

Acknowledgements
The authors are grateful to the OPAL infrastructure from Université Côte d’Azur for providing
resources and support.

References
[1] E. Ferrer, R. H. Willden, A high order Discontinuous Galerkin – Fourier incompressible

3D Navier–Stokes solver with rotating sliding meshes, Journal of Computational Physics
231 (2012) 7037–7056.

[2] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement, Computer Methods in Applied Mechanics and
Engineering 194 (2005) 4135 – 4195.

[3] F. Zhang, Y. Xu, F. Chen, Discontinuous Galerkin methods for Isogeometric Analysis for
elliptic equations on surfaces, Communications in Mathematics and Statistics 2 (2014)
431–461.

[4] Y. Bazilevs, T. J. R. Hughes, Nurbs-based isogeometric analysis for the computation of
flows about rotating components, Computational Mechanics 43 (2008) 143–150.

[5] C. Mavripilis, Nonconforming discretizations and a posteriori error estimators for adap-
tive spectral element techniques, Ph.D. thesis, Massachusetts Institute of Technology,
1989.

[6] D. A. Kopriva, A conservative staggered-grid Chebyshev multidomain method for com-
pressible flows. ii. A semi-structured method, Journal of Computational Physics 128
(1996) 475–488.

[7] B. Zhang, C. Liang, A simple, efficient, and high-order accurate curved sliding-mesh
interface approach to spectral difference method on coupled rotating and stationary
domains, Journal of Computational Physics 295 (2015) 147–160.

[8] J. Dürrwächter, M. Kurz, P. Kopper, D. Kempf, C.-D. Munz, A. Beck, An efficient
sliding mesh interface method for high-order discontinuous Galerkin schemes, Computers
& Fluids 217 (2021) 104825.

[9] E. Laughton, G. Tabor, D. Moxey, A comparison of interpolation techniques for non-
conformal high-order discontinuous galerkin methods, Computer Methods in Applied
Mechanics and Engineering 381 (2021) 113820.

[10] B. Cockburn, C.-W. Shu, The Local Discontinuous Galerkin Method for Time-Dependent
Convection-Diffusion Systems, SIAM Journal on Numerical Analysis 35 (1998) 2440–
2463.

[11] L. Piegl, W. Tiller, The NURBS Book, second ed., Springer-Verlag, New York, NY, USA,
1996.

21

[12] S. Pezzano, R. Duvigneau, A NURBS-based discontinuous Galerkin method for con-
servation laws with high-order moving meshes, Journal of Computational Physics 434
(2021) 110093.

[13] P.-O. Persson, J. Peraire, Sub-Cell Shock Capturing for Discontinuous Galerkin Methods,
2006.

[14] R. Duvigneau, Isogeometric analysis for compressible flows using a Discontinuous
Galerkin method, Computer Methods in Applied Mechanics and Engineering 333 (2018)
443 – 461.

[15] R. Duvigneau, CAD-consistent adaptive refinement using a NURBS-based discontinuous
Galerkin method, Int. J. for Numerical Methods in Fluids (2020).

[16] J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications, 1st ed., Springer, 2007.

[17] R. Steijl, G. Barakos, Sliding mesh algorithm for CFD analysis of helicopter ro-
tor–fuselage aerodynamics, International Journal for Numerical Methods in Fluids 58
(2008) 527–549.

[18] N. Gourdain, Prediction of the unsteady turbulent flow in an axial compressor stage.
Part 1: Comparison of unsteady RANS and LES with experiments, Computers & Fluids
106 (2015) 119–129.

[19] R. Patil, L. Daróczy, G. Janiga, D. Thévenin, Large eddy simulation of an H-Darrieus
rotor, Energy 160 (2018) 388–398.

[20] L. Daróczy, G. Janiga, K. Petrasch, M. Webner, D. Thévenin, Comparative analysis
of turbulence models for the aerodynamic simulation of H-Darrieus rotors, Energy 90
(2015) 680–690.

[21] M. Falsafioon, S. Arabi, R. Camarero, F. Guibault, Comparison of Two Mesh Smoothing
Techniques for Unstructured Grids, 2014.

22

	Introduction
	NURBS-based DG with moving meshes
	Sliding mesh algorithm
	Mesh movement and connectivity update
	Interface splitting
	Flux computation

	Verification: isentropic vortex
	Case study: pitching ellipse flow
	Mesh convergence
	Comparison with deforming mesh
	Influence of the sliding interface radius
	Supersonic flow

	Application: vertical axis wind turbine
	Construction of the computational domain
	Flow simulation

	Conclusion

